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ABSTRACTThe pro
ess by whi
h a 
ell senses and responds to its en-vironment, as in signal transdu
tion, is often mediated bya network of protein-protein intera
tions, in whi
h proteins
ombine to form 
omplexes and undergo post-translationalmodi�
ations, whi
h regulate their enzymati
 and bindinga
tivities. A typi
al signaling protein 
ontains multiple sitesof protein intera
tion and modi�
ation and may 
ontain 
at-alyti
 domains. As a result, intera
tions of signaling pro-teins have the potential to generate a 
ombinatorially largenumber of 
omplexes and modi�ed states, and representingsignal-transdu
tion networks 
an be 
hallenging. Represen-tation, in the form of a diagram or model, usually involvesa tradeo� between 
omprehensibility and pre
ision: 
om-prehensible representations tend to be ambiguous or in
om-plete, whereas pre
ise representations, su
h as a long listof 
hemi
al spe
ies and rea
tions in a network, tend to bein
omprehensible. Here, we develop 
onventions for repre-senting signal-transdu
tion networks that are both 
ompre-hensible and pre
ise. Labeled nodes represent 
omponentsof proteins and their states, and edges represent bonds be-tween 
omponents. Binding and enzymati
 rea
tions aredes
ribed by rea
tion rules, in whi
h left graphs de�ne theproperties of rea
tants and right graphs de�ne the produ
tsthat result from transformations of rea
tants. The rea
tionrules 
an be evaluated to derive a mathemati
al model.
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1. INTRODUCTIONMany 
ellular responses to environmental signals are me-diated by networks of intera
ting proteins that dete
t signals(e.g., ligands of 
ell-surfa
e re
eptors) and transdu
e thesesignals into responses, su
h as the release of stored fa
tors,
hanges in gene expression, and 
ell movement, prolifera-tion, di�erentiation, or death. After the introdu
tion of asignal, the proteins in a signal-transdu
tion network typi-
ally undergo post-translational modi�
ations (e.g., tyrosinephosphorylation), whi
h a�e
t their binding and enzymati
a
tivities, and 
on
urrently 
ombine to form a variety ofheterogeneous 
omplexes [1, 2℄. These 
omplexes, whi
h areoften transient and prominent in the vi
inity of the inner
ell membrane, regulate enzymati
 a
tivities, for example,by serving to 
o-lo
alize enzymes and substrates, whi
h isa 
ommon me
hanism for 
ontrolling enzyme spe
i�
ity [3℄.The number of protein 
omplexes and modi�
ation statesthat potentially 
an be generated during the response toa signal is 
ombinatorially large and generally far greaterthan the number of proteins involved in signal transdu
tion,be
ause signaling proteins 
ontain multiple sites of modi�-
ation and may intera
t with multiple binding partners [4,5℄.There are at least two reasons to a

ount for all the pos-sible protein states and 
omplexes in a signal-transdu
tionnetwork, as numerous as these may be. First, most statesand 
omplexes may be unimportant, but in general, it isimpossible to determine intuitively whi
h are the importantones from knowledge of pairwise protein intera
tions, whi
his the usual level of detail available, even for a well-studiedsystem. Se
ond, the 
atalyti
 a
tivities of signaling proteinsare highly regulated by mole
ular 
ontext. For example, thea
tivity of a protein tyrosine kinase (PTK) might depend onthe phosphorylation state of its a
tivation loop and its spe
i-�
ity might depend on the proximity of a spe
i�
 substrate.Thus, we desire representations of signal-transdu
tion net-works that pre
isely a

ount for the full array of possibleprotein states and 
omplexes implied by a given set of pro-tein intera
tions. To make pra
ti
al use of these representa-



tions, one must be able to translate them into mathemati
aland 
omputational models, whi
h 
an then be used to in-terpret data, predi
t the behavior of a system, and designexperiments to test model-based predi
tions [6, 7, 8℄.A pre
ise representation of a signal-transdu
tion network
an be provided by a 
omprehensive list of the 
hemi
alspe
ies and rea
tions in the network [9℄. However, this typeof representation is diÆ
ult to 
omprehend, even for smallsystems, in that it obs
ures the underlying protein intera
-tions that give rise to the 
hemi
al spe
ies and rea
tions.The list may also be quite long. A more 
omprehensibletype of representation, and one that is 
ommonly used, isprovided by a diagrammati
 intera
tion map in whi
h pro-teins and their intera
tions (or the fun
tional 
onsequen
esof these intera
tions) are indi
ated by labeled 
artoons andarrows. Formal 
onventions have been proposed for drawingintera
tion maps su
h that they have pre
ise meanings [10,11, 12, 13℄. However, intera
tion maps tend to su�er froma tradeo� between pre
ision and 
omprehensibility. Mapsthat are pre
ise enough to have an unambiguous mathemat-i
al interpretation may be no more understandable than alist of rea
tions. On the other hand, ad ho
 heuristi
 maps,whi
h are more the norm, may 
learly illustrate 
ertain as-pe
ts of a system but are ambiguous and la
k a mathemat-i
al interpretation.One way to a
hieve a pre
ise and understandable rep-resentation involves the spe
i�
ation of a rea
tion rule forea
h type of protein-protein intera
tion in a network [5, 8,14, 15, 16℄. In this approa
h, strings are used to represent
hemi
al spe
ies and regular expressions are used to repre-sent groups of 
hemi
al spe
ies with parti
ular attributes.Rea
tion rules, or generalized rea
tions, are written in thesame form as a 
hemi
al rea
tion but regular expressionsare allowed. These string-mat
hing patterns identify groupsof 
hemi
al spe
ies by indi
ating the shared attributes of agroup. Thus, the rules 
an be used to �nd, through stringmat
hing, the 
hemi
al spe
ies among a set of spe
ies thatqualify as rea
tants. The rules also de�ne transformations ofrea
tants into produ
ts by providing a rate law and indi
at-ing how strings representing rea
tants should be modi�ed toobtain produ
ts. Thus, they are generators of rea
tions andprodu
ts, whi
h may in
lude new spe
ies. The result of ruleappli
ation is a list of 
hemi
al spe
ies and rea
tions impliedby the rules and the seed set of spe
ies to whi
h the rulesare initially applied. This approa
h has been used to modelearly events in signaling by F
�RI [14, 15℄, a prototypi
alantigen re
ognition re
eptor of the immune system, and toderive preliminary models for an array of other systems [16℄.The number of rules that must be spe
i�ed is 
omparable tothe number of 
omponents of proteins in the network, whi
his usually mu
h less than the number of 
hemi
al spe
ies.Here, we extend the rule-based approa
h des
ribed aboveby de�ning 
onventions for using graphs to represent 
hem-i
al spe
ies and groups of 
hemi
al spe
ies. The introdu
-tion of graphs is a natural generalization of the string rep-resentation of Blinov et al. [16℄. With it, we gain the abil-ity to expli
itly and systemati
ally represent the 
onne
-tivity of protein 
omponents in a 
omplex at the expenseof �nding graph isomorphisms, instead of simply mat
hingstrings, when applying rea
tion rules. Below, we introdu
ethe 
onventions of representation, present examples, 
om-pare graphi
al rule-based representation with formal dia-grammati
 representation, and brie
y mention the 
lassi-


al problems of graph isomorphisms that must be solved totranslate a set of rules into a model. The method of Blinovet al. [16℄ and ideas presented here will be elaborated inanother publi
ation [17℄.
2. METHOD OF GRAPHICAL REPRESEN­

TATIONFigure 1 introdu
es a method of using graphs and graphrewriting rules, or graphi
al rea
tion rules, to represent signal-transdu
tion networks. We fo
us on signal transdu
tion andprotein-protein intera
tions, but the 
onventions of Fig. 1
an be used to represent other types of 
ellular systems andbiomole
ular intera
tions, su
h as geneti
 regulatory net-works and protein-DNA or protein-lipid intera
tions. Themethod is also illustrated with examples spe
i�
 to the modelof Faeder et al. [15℄ (Figs. 2{5), a model for bivalent ligandintera
tion with a bivalent 
ell-surfa
e re
eptor (Fig. 6), anda model 
onsidered in the review of Aladjem et al. [13℄(Fig. 7).
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Figure 1: Conventions of the graphi
al representa-tion.The method of representation was developed with the fol-lowing features of signaling proteins in mind. These pro-teins are generally 
omprised of 
onserved modular domains.



Some domains are 
atalyti
. A PTK domain, for example,
atalyzes the addition of a phosphate group to a tyrosineresidue of a protein substrate. Some domains are respon-sible for biomole
ular re
ognition; protein intera
tion do-mains re
ognize spe
i�
 types of sites in proteins and otherbiomole
ules [2℄. For example, the Sr
 homology 2 (SH2)domain re
ognizes phosphorylated tyrosines in protein mo-tifs, su
h as the immunore
eptor tyrosine-based a
tivationmotif (ITAM). The a
tivities of protein domains 
an be reg-ulated by post-translational modi�
ations, whi
h are 
at-alyzed by signaling proteins. For example, the a
tivity ofa PTK domain 
an be upregulated by autophosphorylationof its a
tivation loop, and the aÆnity of an SH2 domain foran ITAM 
an be upregulated by PTK-mediated ITAM phos-phorylation. These modi�
ations 
an be reversed (e.g., a ty-rosine 
an be dephosphorylated by a protein tyrosine phos-phatase). Binding events and 
onformational 
hanges 
analso a�e
t the a
tivities of signaling proteins. The 
hallengeis to a

ount for intera
tions among mole
ules, ea
h poten-tially having multiple 
omponents, ea
h potentially havinga binding or 
atalyti
 a
tivity that depends on its bound,
onformational, or modi�
ation state, whi
h 
an vary.
2.1 Components, Internal States, and BondsThe elements of a graph are nodes, labels asso
iated withthe nodes, and undire
ted and unlabeled edges that 
on-ne
t nodes (Fig. 1). Nodes represent 
omponents (e.g., sitesand domains of proteins), whi
h may have multiple inter-nal states (e.g., phosphorylated or unphosphorylated), la-bels give the names of 
omponents and their internal states,and edges represent bonds between 
omponents. Here, welimit dis
ussion to edges that are subje
t to addition or re-moval in a graph rewriting step, i.e., bonds a�e
ted by sig-naling. Bonds 
onne
ting 
omponents that are una�e
tedby signaling are not represented expli
itly. Internal statesare introdu
ed as needed or desired to represent bound, 
on-formational, or modi�
ation states of a 
omponent that arenot represented otherwise. As illustrated in Figs. 1, 2 and7, when a 
omponent is de�ned, it is assigned a name anda list of its allowed internal states (if any) is given.As dis
ussed later, we will sometimes need to spe
ify the
onne
tivity of a node, for example, to write a rea
tion rulein whi
h a parti
ular 
omponent of a rea
tant must be un-bound. Here, we uniformly use an open (�lled) 
ir
le for anode that is un
onne
ted (
onne
ted) to an edge. A half-�lled 
ir
le is used for a node that may be either 
onne
tedor un
onne
ted to an edge. Other ways of spe
ifying 
on-ne
tivity are possible. For example, a spe
ial node might beintrodu
ed to represent an empty spa
e and 
onne
ted tonodes of 
omponents that are unbound.
2.2 MoleculesA mole
ule is de�ned as a set of 
omponents that 
an betreated as a unit (Figs. 1, 2, 6 and 7), su
h as the 
om-ponents of a polypeptide 
hain or multimeri
 protein. Amole
ule is represented graphi
ally by a box surrounding aset of nodes that represents ea
h 
omponent of the mole
ule.Like 
omponents, mole
ules are assigned names, but here,we usually suppress these names to avoid 
lutter, be
ausemole
ules 
an be distinguished by the shapes of their boxesor the names of their 
omponents. Names of 
omponentsare also suppressed in some 
ases. Names 
an be suppressedbe
ause we adopt the 
onvention that the 
omponents of a

mole
ule are represented at �xed relative positions within abox. These 
onventions for illustrating a model do not a�e
tthe underlying graph representation of 
omponents, bonds,and mole
ules. The internal states of a mole
ule and its
onne
tivity to external 
omponents is determined by theattributes of the nodes representing its 
omponents. In ourexamples, every 
omponent is part of a mole
ule.
Molecule definitions
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Fc
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4. Syk

L

A

L-Y

L-pY

A-Y

A-pY

Tandem SH2 domains

Linker region

Activation loopFigure 2: De�nition of mole
ules in the F
�RImodel.
2.3 Chemical SpeciesA 
hemi
al spe
ies is either a single mole
ule having all ofits 
omponents fully de�ned or a set of 
onne
ted mole
ules(i.e., a 
omplex), with ea
h mole
ule in the set having allof its 
omponents fully de�ned. A 
omponent is fully de-�ned if its internal state is spe
i�ed and its 
onne
tion withother 
omponents is spe
i�ed. If a 
omponent is bound toanother 
omponent, then the nodes representing the two
omponents are joined by an edge. An example of a 
hem-i
al spe
ies is illustrated in Fig. 1; others are illustrated inFig. 3. In general, a 
hemi
al spe
ies is represented by agraph in whi
h nodes are partitioned into mole
ules, edges
onne
t the nodes of 
omponents that are bound to ea
hother, and node labels indi
ate the parti
ular internal statesof those nodes that have multiple allowed states. There is a
hemi
al spe
ies for ea
h unique 
ombination of the possible
omponent 
onne
tions and states in a system.
2.4 Groups of Chemical SpeciesGroups of 
hemi
al spe
ies with spe
i�ed shared features
an be de�ned by graphs that do not 
ompletely spe
ify 
om-ponent intera
tions and states, whi
h we 
all group rules or
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Extracellular

Cytosol

Plasma 

membrane

Figure 3: A set of parti
ular 
hemi
al spe
ies in theF
�RI model.group graphs. The intera
tions and states that are spe
i�edde�ne the distinguishing features of a group. An example ofa group rule is shown in Fig. 1 along with a set of 
hemi
alspe
ies having features 
onsistent with the rule. In general,given a set of 
hemi
al spe
ies, this group rule sele
ts all
hemi
al spe
ies among the set in whi
h 
omponent B ofthe indi
ated mole
ule is in state pY. Be
ause the internalstate of 
omponent A and the 
onne
tivity of B are unspe
-i�ed in the rule, 
hemi
al spe
ies sele
ted by the rule 
anhave di�erent states of A and di�erent bound states of B asshown. Additional spe
ies, depending on the set of spe
iesbeing tested, 
ould belong to the group, as would be the
ase if 
omponent A was atta
hed to a binding partner inone of the spe
ies among the set tested. A se
ond exampleof a group graph is shown in Fig. 4.
A-pY

Example of a species group

Active SykFigure 4: A group of 
hemi
al spe
ies.Formally, a 
hemi
al spe
ies represented by graph X isa member of a group represented by group graph G, if andonly if there is a subgraph of X that is isomorphi
 toG whenthe internal states are removed from the labels of nodes inX that have unspe
i�ed internal states in G. Thus, theproblem of identifying whi
h spe
ies belong to a group isredu
ed to the problem of determining whether X 
ontainssubgraphs isomorphi
 to the group graph G, whi
h is knownas the subgraph isomorphism problem. A well-known algo-rithm for �nding isomorphi
 subgraphs is the method ofUllmann [18℄.
2.5 Reaction RulesRea
tion rules are graph rewriting rules that 
an be usedto generate 
hemi
al rea
tions from a list of 
hemi
al spe
ies

by identifying sets of rea
tants and de�ning how rea
tantsare transformed into produ
ts. Ea
h rule is 
omprised oftwo sets of group graphs (a set of graphs representing rea
-tants and a set of graphs representing produ
ts), an arrowpointing from rea
tants to produ
ts, and a rate law. Therate law in general 
an be any fun
tion of the propertiesof rea
tants and produ
ts, e.g., k[A℄[B℄, where k is a rate
onstant and [A℄ and [B℄ are the 
on
entrations of rea
tantsin a biomole
ular rea
tion. An example of a rea
tion ruleis shown in Fig. 1. The bidire
tional arrows indi
ate thatthe rule is to be applied in both the forward and reversedire
tions.The �rst step in applying a rea
tion rule to a set of 
hem-i
al spe
ies is to identify the group of spe
ies 
orrespondingto ea
h rea
tant group graph, as des
ribed in the previ-ous se
tion. Next, for ea
h 
ombination of rea
tant spe
iesdrawn from these groups, the rule is applied by repla
ingthe subgraphs of the rea
tant spe
ies mat
hing the groupgraphs of rea
tants with the 
orresponding group graphs ofprodu
ts to de�ne the produ
ts. In 
arrying out this re-pla
ement, 
omponent states that are not spe
i�ed in theprodu
t group graphs are not 
hanged. This pro
ess of re-pla
ing subgraphs of rea
tants with produ
t group graphs isa graph rewriting step [19℄, i.e., a 
ut-and-paste operation(or in some 
ases, equivalently, a relabeling operation) thattransforms rea
tant graphs in produ
t graphs. The produ
tspe
ies that result from graph rewriting are then 
he
kedagainst the 
urrent list of 
hemi
al spe
ies and added to thelist if they are not already present. To fa
ilitate this 
ompar-ison, graphs must be assigned a unique label that does notdepend on the order of 
omponents, graph partitions (i.e.,mole
ules), or edges. Su
h labels 
an be assigned using the
anoni
al graph labeling s
heme of M
Kay [20℄. Canoni-
al labels are also useful for 
he
king the generated rea
tionagainst the list of previously generated rea
tions to identifyoverlaps in rea
tion rules or to prevent dupli
ation of rea
-tions that are related be
ause of symmetry. An example ofappli
ation of a rea
tion rule that would generate two rea
-tions is shown in Fig. 1. The set of rules that generate themodel of Faeder et al. [15℄ is shown in Fig. 5. Other sets ofrules are shown in Figs. 6 and 7.
2.6 Generation of a Chemical Reaction Net­

workAn initial set of 
hemi
al spe
ies must be spe
i�ed as astarting point for the appli
ation of rea
tion rules and thegeneration of a 
hemi
al rea
tion network. A typi
al startingpoint for network generation would be the set of individualmole
ules with ea
h 
omponent in its resting internal state.A seed set of initial 
hemi
al spe
ies is shown in Fig. 3; iter-ative appli
ation of the rules of Fig. 5 to this set of spe
iesgenerates the rea
tion network of Faeder et al. [15℄, whi
h
ontains 354 
hemi
al spe
ies and 3680 rea
tions. Itera-tive appli
ation of rea
tion rules 
an be 
arried out untila termination 
ondition is satis�ed or all possible spe
iesand rea
tions are generated. An exhaustive generation ofall spe
ies and rea
tions a

essible from the initial set is apossible termination 
ondition as long as the rea
tion rulesgive rise to a �nite number of spe
ies, but may not be desir-able in the 
ase of very large networks, e.g., if the numberof 
hemi
al spe
ies 
ontaining a parti
ular mole
ule ex
eedsthe number of that kind of mole
ule in a 
ell. The rules ofFig. 6 provide an example of a rule set for whi
h exhaustive



Reaction Rules

1.  Ligand binding

2.  Ligand-induced aggregation

3.  Binding of Lyn to unphosphorylated receptor

4.  Binding of Lyn to phosphorylated receptor

7.  Binding of Syk to phosphorylated receptor

8.  Transphosphorylation of Syk by Syk

A-Y

A-Y

A-pY

A-pY

9.  Transphosphorylation of Syk by Lyn

10.  Dephosphorylation

L-Y

L-Y

L-pY

L-pYFigure 5: Graphi
al rule-based representation of the F
�RI model.generation of all possible 
hemi
al spe
ies and rea
tions isimpossible. In these 
ases, other termination 
onditions areneeded. Alternatively, network generation and simulation
an pro
eed in tandem, su
h that spe
ies and rea
tions aregenerated on-the-
y as needed [5, 21℄.
2.7 Output functionsIt is often useful to asso
iate a mathemati
al fun
tion witha group of 
hemi
al spe
ies, su
h as the sum of 
on
en-trations of all members of a group, be
ause experimentalobservables often 
orrespond to properties of ensembles of
hemi
al spe
ies. A group graph and asso
iated fun
tion
an be spe
i�ed to 
al
ulate this sum. For example, thegroup rule in Fig. 1 
ould be used to 
al
ulate the 
on-
entration of the spe
i�ed protein phosphorylated on its Bdomain tyrosine, and the group rule in Fig. 4 
ould be usedto 
al
ulate the 
on
entration of re
eptor-bound autophos-phorylated Syk.
3. EXAMPLES

3.1 The Fc�RI NetworkFigures 2{5 illustrate how the F
�RI signaling model ofFaeder et al. [15℄ 
an be representated using the proposedgraphi
al 
onventions. This model vividly illustrates 
ombi-natorial 
omplexity. The four mole
ules of Fig. 2 
ombinedwith the ten rea
tion rules of Fig. 5 imply 354 
hemi
alspe
ies, whi
h are 
onne
ted through 3680 rea
tions. The
onnne
tivity of 
omponents in 
omplexes is expli
it in the

graphi
al representation, unlike for the string representationused in earlier work [16℄.Are all these spe
ies and rea
tions important? Re
entwork indi
ates that while only a small portion of the F
�RInetwork is a
tive for a parti
ular set of model parameters(
on
entrations and rate 
onstants), the a
tive portion de-pends on the parameter values and a
tivity 
an be shifted[22℄. Redu
ed models 
an be found that reprodu
e predi
-tions of the full model; however, the predi
tions of thesemodels, relative to the full model, be
ome ina

urate whenparameter values are varied over moderate ranges. For de-tails, see [22℄. Others are also studying model redu
tion inthe 
ontext of signal transdu
tion [23℄.
3.2 Ligand­Receptor Aggregation with Chains

and RingsDembo and Goldstein [24℄ and Posner et al. [25℄ developeda model for bivalent ligand intera
tion with a 
ell-surfa
e bi-valent re
eptor, whi
h is represented in Fig. 6. The ligandis symmetri
 and its two sites are equivalent. The sameholds for the re
eptor, whi
h is free to di�use in the two-dimensional membrane surfa
e of a 
ell. This model wasdeveloped to des
ribe ligand-re
eptor binding and re
eptoraggregation for the simplest type of antigen 
apable of aggre-gating IgE-F
�RI 
omplexes. A 
omplex of IgE and F
�RI
an be treated as a bivalent re
eptor be
ause the 
omplexis long lived and IgE antibody has two antigen-
ombiningsites. This model is more physiologi
al than the simplerbinding model 
onsidered in the example of the previous



se
tion, whi
h des
ribes bivalent ligand binding to mono-valent re
eptor. The representational 
onventions proposedhere make it easy to 
ombine the two models. The rulesof Fig. 6 simply repla
e rea
tion rules 1 and 2 in Fig. 5.This simple 
hange results in a 
ombinatorial explosion inthe number of possible spe
ies and rea
tions. For example,there are 1854 dimeri
 re
eptor states alone.
Bivalent ligand

Bivalent receptor

equivalent 

binding sites

Ligand capture

Receptor chain elongation

Closure of a ring with one receptor

Molecule definitions

Reaction rules

Closure of a ring with multiple receptors

second receptor is contained 

within the same complexFigure 6: Representation of a model for bivalent lig-and intera
tion with a 
ell-surfa
e bivalent re
eptorwith 
hains and rings of re
eptors in
luded.
3.3 Comparison with a Diagrammatic Repre­

sentationFigure 7 shows two representations of a model for thephosphorylation of the retinoblastoma protein (Rb) by a
y
lin-dependent kinase [13℄. The �rst representation is di-agrammati
 and drawn a

ording to the s
heme proposed byKohn [10℄. Below, the equivalent rule-based representationis given. Both representations have an unambiguous math-emati
al interpretation, and both su�er from some of thesame drawba
ks. For example, both require some invest-ment of time to master, and both are me
hanisti
 ratherthan fun
tional, making it diÆ
ult to identify intera
tionsas stimulatory or inhibitory. A disadvantage of the diagram-mati
 approa
h is the need to represent ea
h 
omplex as aseparate numbered dot, whi
h is problemati
 when the num-ber of 
omplexes is large. In 
ontrast, in the rule-based ap-proa
h, intera
tions are spe
i�ed in the form of rules and the
omplexes implied by these rules 
an then be identi�ed in anautomati
 pro
edure [16, 17℄. The rule-based representationis perhaps easier to follow (at least for those already familiarwith 
hemi
al kineti
s), but has the drawba
k that multiple

intera
tions involving the same 
omponent are 
ontained inseparate rules1 . From the point of view of someone trying todevelop a mathemati
al model of the system, the rule-basedrepresentation is probably more natural and permits more
exibility and pre
ision in the spe
i�
ation of the rea
tionnetwork. For example, it is possible to use rea
tion rulesto spe
ify how the mole
ular 
ontext of a 
omponent a�e
tsthe rate at whi
h a rea
tion takes pla
e, whereas 
ontext isdiÆ
ult to represent in the diagrammati
 s
heme. We haveadded boldfa
ed numbers to the map in Fig. 7 to illustratehow the two representations might be 
ombined, su
h thatrea
tion rules are used to annotate the arrows of a diagram-mati
 intera
tion map. This type of annotation might helpto improve the 
larity of both maps and rules and resolveambiguities that often arise in maps by atta
hing a pre
isemathemati
al des
ription to their arrows.
4. CONCLUSIONSA rule-based representation s
heme is 
omprehensible andpre
ise in 
ertain senses. It is 
omprehensible in that the in-formation needed to spe
ify or interpret a model is the typeof information often available about a system, knowledgeof modular protein intera
tions. In our experien
e, thereis usually a 
lose 
orresponden
e between the protein inter-a
tions in a system and the rea
tion rules needed or usedto model the system. Importantly, the number of rea
tionrules needed to represent a system is related to the num-ber of 
omponents in the system, whi
h in general is farless than the number of possible 
hemi
al spe
ies and rea
-tions. Comprehensibility, of 
ourse, depends on the abilityto read a list of rea
tion rules. A 
ombination of rules anddiagrammati
 intera
tion maps is probably more readablethan either type of representation alone. The method ofrepresentation is pre
ise in that all the 
hemi
al spe
ies andrea
tions implied by spe
i�ed protein intera
tions, in theform of rules, are 
onsidered. However, when a rea
tionrule is introdu
ed, a 
lass of rea
tions is de�ned, and withinthis 
lass, the rate of a rea
tion is sensitive to only spe
-i�ed aspe
ts of mole
ular 
ontext and there is a risk that
riti
al details might be overlooked. Nevertheless, this sim-pli
ation seems like a good starting point for an iterative
y
le of model testing and re�nement when one desires toin
orporate detail at the level of protein sites and domains.We were inspired to use graphs and graph rewriting rulesto represent signal-transdu
tion systems by the use of graphsand graph rewriting rules to model other types of systems[26, 27, 28℄. The advan
e allowed by the 
onventions in-trodu
ed here, relative to earlier rule-based representation[16℄, is the ability to tra
k the 
onne
tivity of 
omponentsin 
omplexes systemati
ally and expli
itly. This ability isimportant in part be
ause of the 
ompli
ated polymer-likeaggregates that 
an form through intera
tions among pro-teins that 
ontain multiple sites of intera
tion (Fig. 6) [5℄.It is also important if one wishes to adjust the rates of sig-naling rea
tions based on the stereo
hemi
al properties ofrea
tants. For example, one might wish to make the rateof a rea
tion depend on the distan
e between an enzymeand a substrate within a 
omplex, where distan
e might be1Kitano [12℄ has proposed a �x to this problem: pro
ess di-agrams, whi
h ea
h represent a sequen
e of rea
tion events.However, multiple pro
ess diagrams are needed to a

ountfor all possible routes through a bran
hed rea
tion network.



measured by the number of edges 
onne
ting the enzymeand substrate. The 
ost of expli
itly tra
king the 
onne
-tivity of 
omponents is the need to �nd subgraph isomor-phisms in graph rewriting steps. Straightforward algorithmsexist for �nding subgraph isomorphisms [18℄, but they 
anbe 
omputationally expensive. Fortunately, we expe
t thatmost problems will involve small graphs, for whi
h standardmethods are e�e
tive and feasible.The 
onventions introdu
ed here might be extended inseveral ways. For example, we 
onsidered only bonds be-tween 
omponents that are a�e
ted by signaling (i.e., bondsthat 
an be formed or broken through the appli
ation of area
tion rule) and with one ex
eption (Fig. 7), only binaryintera
tions between 
omponents. Later, it may be 
onve-nient to introdu
e edge labels to distinguish, for example,between edges that 
an and 
annot be added or removedthrough graph rewriting. This might fa
ilitate represen-tation of the internal 
onne
tivity of the 
omponents of amole
ule. It may also be 
onvenient to introdu
e the 
on-
ept of valen
e to fa
ilitate the representation of ternary orhigher-order intera
tions between 
omponents.We have presented representational tools that, in prin
i-ple, 
an be used to develop an initial mathemati
al modelfor any network of proteins for whi
h knowledge of protein-protein intera
tions is available. This type of knowledge isnow being rapidly generated and 
atalogued in ele
troni
databases. We believe mathemati
al modeling, and meth-ods of representation like the one presented here, will playan important role in determining how these intera
tions af-fe
t the behavior of a 
ell. We note that the development oftools for representing and modeling 
omplex biologi
al sys-tems is an a
tive area of resear
h and mu
h work has beendone that is related to the work reported here [29, 30, 31,32℄.
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8Figure 7: A formal diagrammati
 map and the 
or-responding set of graphi
al rea
tion rules.


